Branche, teknologi, komponentdistribution

 

Kunstige neurale netværk skal gøre livet lettere for høreapparatbrugere Foto: Oticon

Kunstige neurale netværk skal gøre livet lettere for høreapparatbrugere

Ph.d.-studerende Morten Kolbæk fra Aalborg Universitet (AAU) har udviklet en banebrydende algoritme, der kan gøre det nemmere for høreapparatbrugere at deltage aktivt i samtaler i støjfyldte omgivelser.

For personer med nedsat hørelse er det ofte et stort problem at forstå og adskille stemmer i støjfyldte omgivelser. Dette problem kan snart blive fortid takket være en ny banebrydende algoritme, som er designet til at udtrække og adskille stemmer effektivt i ukendte lydmiljøer.

Mennesker med normal hørelse kan i de fleste tilfælde forstå hinanden uden de store anstrengelser, når de kommunikerer i et støjfyldt miljø. Hvis man derimod har nedsat hørelse, kan det være virkelig svært at forstå og adskille stemmer i støjfyldte omgivelser, og her kan et høreapparat ofte være til hjælp. Der er imidlertid stadig udfordringer inden for generel lydbehandling i hørehjælpemidler, forklarer Morten Kolbæk.

– Når lydbilledet, der omgiver brugeren, er kendt på forhånd, som i visse kliniske test-setups, eksisterer der allerede algoritmer, der er lige så gode som mennesker til at udtrække og adskille talere. I en almindelig lyttesituation uden forudgående kendskab er den menneskelige hjerne dog stadig den bedste 'maskine'.

Det er imidlertid lige nøjagtig det, Morten Kolbæk har arbejdet på at ændre med den nye algoritme.

– På grund af algoritmens evne til at fungere i ukendte miljøer med ukendte stemmer, er dens funktionalitet så meget stærkere, end det vi har set med tidligere teknologi. Det er et vigtigt skridt fremad, når vi taler om løsning af vanskelige lyttesituationer i hverdagen, siger den ene af Morten Kolbæks to vejledere, Jesper Jensen, som er seniorforsker på Oticon og samtidig professor på Center for Akustisk Signalbehandling (CASPR) på AAU.

Professor Zheng-Hua Tan, som ligeledes er tilknyttet CASPR og vejleder på projektet, er enig i algoritmens store potentiale inden for lydforskning.

– Nøglen til denne algoritmes succes er, at den ved at lære fra data, opbygger stærke statistiske modeller, som er i stand til at repræsentere komplekse lyttesituationer. Det fører til løsninger, der fungerer godt selv i nye lyttesituationer, forklarer Zheng-Hua Tan.

Helt konkret har Morten Kolbæks ph.d.projekt beskæftiget sig med to forskellige, men velkendte lyttescenarier.

Det første spor arbejder hen mod at løse udfordringen med samtale på tomandshånd i et støjfyldt rum. Det kan f.eks- være i en bil. Det er en situation, som høreapparatbrugere oplever hele tiden.

En computer bag øret

Én ting er at udvikle algoritmen, en anden er at få den til at virke i et rigtigt høreapparat. Morten Kolbæks algoritme for taleadskillelse virker indtil videre kun i større målestok.

– Med høreapparater er udfordringen altid, at teknologien skal kunne fungere på en lille computer bag øret, og lige nu kræver Mortens algoritme for meget plads til, at det kan lade sig gøre. Og selv hvis Mortens algoritme kan adskille flere ukendte stemmer fra hinanden, beskæftiger den sig ikke med at vælge, hvilken stemme den skal præsentere for høreapparatbrugeren. Så der er nogle praktiske spørgsmål, der skal løses, før vi kan introducere den i en høreapparatløsning. Det vigtigste er dog, at disse problemer nu synes at være til at løse, siger Jesper Jensen.

Cocktailparty-problemet

Normalthørende er ofte i stand til at fokusere på én taler af interesse, selv i akustisk vanskelige situationer, hvor andre personer taler samtidigt. Problemet er kendt som cocktailparty-problemet, og det er et meget aktivt forskningsområde at søge at forstå, hvorledes den menneskelige hjerne er i stand til at løse problemet så godt. Dette ph.d.-projekt er et skridt imod at bygge algoritmer, som endelig kan løse problemet, bemærker Jesper Jensen:

Man hører nogle gange, at cocktailparty-problemet er blevet løst. Det er endnu ikke tilfældet. Den menneskelige hjerne fungerer ekstremt godt i ukendte miljøer, og hvis miljø og stemmer er fuldstændig ukendte, hvilket ofte er tilfældet i virkelighedens verden, kan den eksisterende teknologi ikke matche hjernen. Men Mortens algoritme er et stort skridt i retning mod at gøre maskiner i stand til at fungere og hjælpe normalthørende og personer med hørehandicap i sådanne miljøer, siger Jesper Jensen.

7/1 2019
Produktlinks
Find din leverandør:

Mekanik underleverandør

Test & Måleudstyr

Test laboratorier

Tilføj dit firma
  • Texim

    Texim

    Focus Suppliers Nordic